THE PROSPECTS AND CHALLENGES OF CRISPR/CAS9 GENE EDITING IN CANCER THERAPY: A LITERATURE REVIEW

D.A. ABDUSSADYK 1, A.Zh. BEISENOVA 1

1. «Asfendiyarov Kazakh National Medical University» NCJSC, Almaty, the Republic of Kazakhstan

DOI: https://www.doi.org/10.52532/2521-6414-2023-2-68-64-68

UDC: 616-006:577.21

Year: 2023 issure: 68 number: 2 pages: 64-68

Download PDF:

ABSTRACT

Relevance: Cancer remains one of the leading causes of death in Kazakhstan, and CRISPR/Cas9 offers possible solutions to treat it. Clustered, regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) is a system bacteria use to cleave foreign in-vaders. This system has been considered promising for cancer therapeutics by allowing researchers to edit cancer cell genes.
The system requires more trials, so it is essential to raise awareness of this technique for stu-dents and potential investors and highlight the current challenges that could be research opportuni-ties for researchers.
The study aimed to analyze and provide up-to-date information from reputable scientific journals on the current use of the CRISPR/Cas9 system in cancer therapeutics for medical students and researchers. This research paper also highlights the challenges associated with implementing CRISPR/Cas9 in clinical settings for cancer therapeutics.
Methods: The scientific literature and databases (PubMed and the Nature Journal) were searched and analyzed using the CRISPR/Cas9 system in cancer therapy.
Results: The results of this research indicate that scientists should focus on improving the types and structure of the Cas protein as well as the delivery methods, including the non-viral deliv-ery methods (liposome-based particles, hybrid vectors, gold nanoparticles, and extracellular vesicles) to contribute to improving the current status of cancer therapeutics.
Conclusion: CRISPR/Cas9 is an important technique that is still fraught with challenges and should be turned into research opportunities. The current challenges include the form and structure of the Cas nuclease, the types of engineering (in vivo vs. ex vivo), and the varieties of delivery methods. Each delivery method type has pros and cons and requires further research. In particular, future studies should focus on non-viral vectors, such as liposome-based particles, extracellular vesi-cles, hybrid vesicles, and gold nanoparticles.
Keywords: CRISPR, Cas9, cancer, oncology, delivery vectors, nanoparticles.

List of sources used:

  1. Song X., Liu C., Wang, N. Delivery of CRISPR/Cas systems for cancer gene therapy and immunotherapy // Adv. Drug Deliv. Rev. – 2021. – P. 158-180.https://doi.org/10.1016/j.addr.2020.04.010
  2. Eyquem J., Mansilla-Soto J., Giavridis T., Van der Stegen S.J., Hamieh M., Cunanan K.M., Odak A., Gonen M., Sadelain M. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection // Nature.– 2017. – Vol.543. – P.113–117.10.1038/nature21405
  3. Rafii S., Tashkandi E., Bukhari N., Al-Shamsi H.O. Current Status of CRISPR/Cas9 Application in Clinical Cancer Research: Opportunities and Challenges // Cancers. – 2022. – Vol.14(4). –P.947. https://doi.org/10.3390/cancers14040947
  4. Li T., Yang Y., QiH.CRISPR/Cas9 therapeutics: progress and prospects // Sig. Transduct. Target Ther.–2023. – Vol. 8(1). – Art. no.36. https://doi.org/10.1038/s41392-023-01309-7
  5. Qi L.S., Larson M.H., Gilbert L.A., Doudna J.A., Weissman J.S., Arkin A.P., Lim W.A. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression // Cell. – 2013. – Vol.152 –P.1173-1183.https://doi.org/10.1016/j.cell.2013.02.022
  6. Liu X.S., Wu H., Ji X., Stelzer Y., Wu X., Czauderna S., Shu J., Dadon D., Young R.A., Jaenisch R. Editing DNA methylation in the mammalian genome // Cell. – 2016 – Vol.206 (167). – P.233-247.https://doi.org/10.1016/j.cell.2016.08.056
  7. Smith T.T, Stephan S.B., Moffett H.F., McKnight L.E., Ji W., Reiman D., Bonagofski E.,Wohlfahrt M.E., Pillai S.P.S., Stephan M.T. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers // Nature Nanotech. –2017. –Vol.12.– P.813-820. https://doi.org/10.1038/nnano.2017.57
  8. Charlesworth C.T., Deshpande P.S., Dever D.P., Camarena J., LemgartVol.T., Cromer M.K.,Vakulskas C.A., Collingwood M.A., Zhang L., Bode N.M., Behlke M.A., Dejene B.,Cieniewicz B.,Romano R., Lesch B.J., Gomez-Ospina N., Mantri S., Pavel-Dinu M.,Weinberg K.I., Porteus M.H. Identification of preexisting adaptive immunity to Cas9 proteins in humans // Nature Med.– 2019. – Vol.25 – P.249-254. https://doi.org/10.1038/s41591-018-0326-x
  9. Wagner D.L., Amini L., Wendering D.J., Burkhardt L.M., Akyuz L., Reinke P., Volk H.D.,Schmueck-Henneresse M. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population// Nature Med. – 2019. – Vol.25. – P.242-248. https://doi.org/10.1038/s41591-018-0204-6
  10. Senís E., Fatouros C., Große S., Wiedtke E., Niopek D., Mueller A.K., Börner K., Grimm D.CRISPR/Cas9-mediated genome engineering: An adeno-associated viral (AAV) vector toolbox // Biotech. J. – 2014. – Vol.9 – P.1402-1412. https://doi.org/10.1002/biot.201400046
  11. Rosenblum D., Gutkin A., Kedmi R., Ramishetti S., Veiga N., Jacobi A.M., Schubert M.S., Friedmann-Morvinski D., Cohen Z.R., Behlke M.A., Lieberman J., Peer D. CRISPR-Cas9 genome editing using targeted lipid nanoparticles for cancer therapy // Sci. Adv. – 2020. – Vol. 6(47). – Art. no. eabc9450. https://doi.org/10.1126/sciadv.abc9450
  12. Xu C.L., Ruan M.Z.C., Mahajan V.B., Tsang S.H. Viral Delivery Systems for CRISPR // Viruses. – 2019. – Vol. 11(1). – P. 28. https://doi.org/10.3390/v11010028
  13. Chen F., Alphonse M., Liu Q. Strategies for non-viral nanoparticle-based delivery of CRISPR/Cas9 therapeutics // WIREs Nanomed. Nanobiotechnol. – 2020. – Vol. 12. – Art. no. e1609. https://doi.org/10.1002/wnan.1609
  14. BalonK., Sheriff A., Jackow J., Laczmanski L. Targeting Cancer with CRISPR/Cas9-Based Therapy // Int. J. Mol. Sci. – 2022. – Vol. 23 (1). – P. 573. https://doi.org/10.3390/ijms23010573
  15. El Andaloussi S., Mäger I., Breakefield X.O., Wood M.J. Extracellular vesicles: Biology and emerging therapeutic opportunities // Nat. Rev. Drug Discov. – 2013. – Vol.12 (5). – P.347-357. https://doi.org/10.1038/nrd3978.
  16. Babuta M., Furi I., Bala S., Bukong T.N., Lowe P., Catalano D., Calenda C., Kodys K., Szabo G. Dysregulated autophagy and lysosome function are linked to exosome production by micro-RNA in alcoholic liver disease // Hepatology.– 2019. – Vol.70 – P. 2123-2141. https://doi.org/10.1002/hep.30766
  17. Xu Q., Zhang Z., Zhao L., Qin Y., Cai H., Geng Z., Zhu X., Zhang W., Zhang Y., Tan J. Tropism-facilitated delivery of CRISPR/Cas9 system with chimeric antigen receptor-extracellular vesicles against B-cell malignancies // J. Control. Release.– 2020 – Vol. 326. – P.455-467. https://doi.org/10.1016/j.jconrel.2020.07.033.
  18. DuanL., Xu L., Xu X., Qin Z., Zhou X., Xiao Y., Liang Y., Xia J. Exosome-mediated delivery of gene vectors for gene therapy // Nanoscale. – 2021. – Vol. 13. – P. 1387-1397. https://doi.org/10.1039/d0nr07622h
  19. Meliani A., Boisgerault F., Fitzpatrick Z., Marmier S., Leborgne C., Collaud F. Enhanced liver gene transfer and evasion of preexisting humoral immunity with exosome-enveloped AAV vectors. // Blood Adv. – 2017. – Vol. 1. – P.2019-2031. https://doi.org/10.1182/bloodadvances.2017010181
  20. Ahmadi S.E., Soleymani M., Shahriyary F., Amirzargar M.R., Ofoghi M., Fattahi M.D., Safa M. Viral vectors and extracellular vesicles: Innate delivery systems utilized in CRISPR/Cas-mediated cancer therapy // Cancer Gene Ther. – 2023. – Vol.28 (1). – P. 19. https://doi.org/10.1038/s41417-023-00597-z.
  21. Orefice N.S., Souchet B., Braudeau J., Alves S., Piguet F., Collaud F. Real-time monitoring of exosome enveloped-AAV spreading by endomicroscopy approach: A new tool for gene delivery in the brain // Mol. Ther. Methods Clin. Dev. – 2019. – Vol.14. – P.237-251. https://doi.org/10.1016/j.omtm.2019.06.005
  22. Amina S.J., Guo B. A Review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle // Int. J. Nanomed. – 2020.– Vol. 7 (15). – P.9823-9857. https://doi.org/10.2147/IJN.S279094
  23. Wang P., Zhang L., Zheng W., Cong L., Guo Z., Xie Y., Wang L., Tang R., Feng Q., Hamada Y., Gonda K., Hu Z., Wu X., Jiang X. Thermo-triggered release of CRISPR-Cas9 System by lipid-encapsulated gold nanoparticles for tumor therapy // Angew. Chem. Int. Ed. Engl. – 2018. – Vol.57 (6). – P.1491-1496. https://doi.org/10.1002/anie.201708689

Error: Contact form not found.