DWI CAPACITY IN PROSTATE CANCER DIAGNOSING

K.E. Karakoishin 1, Zh.Zh. Zholdybay 1, A.S. Aynakulova 1, D.K. Toleshbaev 1, G.M. Muhit 1, Ye. Ayserbay 1

1. «Asfendiyarov Kazakh National Medical University» NCJSC, Almaty, the Republic of Kazakhstan

DOI: https://www.doi.org/10.52532/2521-6414-2023-2-68-36-42

UDC: 616.65-006:073.756.8

Year: 2023 issure: 68 number: 2 pages: 36-42

Download PDF:

ABSTRACT

Relevance: Prostate cancer is one of the leading causes of cancer deaths in men worldwide. Transrectal ultrasound-guided (TRUS) prostate biopsy is the most important diagnostic step, without which a definitive diagnosis cannot be made. Despite this, TRUS-guided prostate biopsy has a high rate of false negatives and is often accompanied by various clinical complications. Multiparametric MRI (mpMRI) is now widely used in routine urological and oncological practice. An element of mpMRI is diffusion-weighted imaging (DWI), which is successfully used in detecting and localizing clinically significant prostate cancer.
The study aimed to evaluate the DWI capacity in diagnosing prostate cancer.
Methods: 52 patients, 48-86 years old, with suspected prostate cancer, underwent mpMRI. DWI sequences obtained using T2-weighted imaging (T2WI) were compared with each other and compared with the anatomical structure of the prostate. Suspicious prostate cancer sites were marked as regions of interest, for which an apparent diffusion coefficient (ADC) was calculated. A 12-point TRUS-guided biopsy confirmed the presence or absence of prostate cancer.
Results: When analyzing quantitative measurements, ADC showed low values for cancer in the central gland (transitional zone and central zone) – 0.610±0.157×10-3 mm2/s, p=0.0001, and for cancer in the peripheral zone – 0.651±0.228×10-3 mm2/s, p=0.0004, compared to normal tissue. It was found that the highest sensitivity value (87.5%) is typical for ADC central gland, and the lower value for ADC peripheral zone is 75%. The highest specificity value (90.9%) was observed in ADC peripheral zone, and a lower value in ADC central gland – was 84.1%.
Conclusion: DWI is an effective non-invasive method for detecting and localizing prostate cancer, providing a qualitative (visual) and quantitative assessment of prostate cancer.
Keywords: prostate cancer, multiparametric magnetic resonance imaging (mpMRI), transrectal ultrasound (TRUS), diffusion-weighted imaging (DWI).

List of sources used:

  1. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries // CA Cancer J. Clin. – 2021. – Vol.71, №3. – P 209-249. https://doi.org/10.3322/caac.21660
  2. Richenberg J., Løgager V., Panebianco V., Rouviere O., Villeirs G., Schoots I. G. The primacy of multiparametric MRI in men with suspected prostate cancer // Eur. Radiol. – 2019. – Vol. 29(12). – P. 6940-6952. https://doi.org/10.1007/s00330-019-06166-z
  3. Borghesi M., Ahmed H., Nam R., Schaeffer E., Schiavina R., Taneja S., Loeb S. Complications After Systematic, Random, and Image-guided Prostate Biopsy // Eur. Urol. – 2017. – Vol. 71(3). – P. 353-365. https://doi.org/10.1016/j.eururo.2016.08.004
  4. Hamoen E.H.J., de Rooij M., Witjes J. A., Barentsz J. O., Rovers M.M. Use of the Prostate Imaging Reporting and Data System (PI-RADS) for Prostate Cancer Detection with Multiparametric Magnetic Resonance Imaging: A Diagnostic Meta-analysis // Eur. Urol. – 2015. – Vol. 67(6). – P. 1112–1121. https://doi.org/10.1016/j.eururo.2014.10.033
  5. Weinreb J.C., Barentsz J.O., Choyke P.L., Cornud F., Haider M.A., Macura K. J., Verma S. PI-RADS Prostate Imaging – Reporting and Data System: 2015, Version 2 // Eur. Urol. – 2016. – Vol. 69(1). – P. 16–40. https://doi.org/10.1016/j.eururo.2015.08.052
  6. Tamada T., Kido A., Yamamoto A., Takeuchi M., Miyaji Y., Moriya T., Sone T. Comparison of Biparametric and Multiparametric MRI for Clinically Significant Prostate Cancer Detection With P-RADS Version 2.1 // JMRI. – 2021. – Vol. 53(1). – P. 283-291. https://doi.org/10.1002/jmri.27283
  7. Tamada T., Sone T., Jo Y., Yamamoto A., Ito K. Diffusion-weighted MRI and its role in prostate cancer // NMR Biomed. – 2013. – Vol. 27(1). – P. 25-38. https://doi.org/10.1002/nbm.2956
  8. Stabile A., Giganti F., Rosenkrantz A.B., Taneja S.S., Villeirs G., Gill I.S., Kasivisvanathan V. Multiparametric MRI for prostate cancer diagnosis: current status and future directions // Nat. Rev. Urol. – 2020. – Vol. 17(1). – P. 41-61. https://doi.org/10.1038/s41585-019-0212-4
  9. Alabousi M., Salameh J.P., Gusenbauer K., Samoilov L., Jafri A., Yu H., Alabousi A. Biparametric versus Multiparametric Prostate MRI for the Detection of Prostate Cancer in Treatment-Naive Patients: A Diagnostic Test Accuracy Systematic Review and Meta-Analysis // BJU Int. – 2019. –Vol. 124(2). – P. 209-220. https://doi.org/10.1111/bju.14759
  10. Niu X., Chen X., Chen Z., Chen L., Li J., Peng T. Diagnostic Performance of Biparametric MRI for Detection of Prostate Cancer: A Systematic Review and Meta-Analysis // Am. J. Roentgenol. – 2018. – Vol. 211(2). – P. 369-378. https://doi.org/10.2214/ajr.17.18946
  11. Woo S., Suh C.H., Kim S.Y., Cho J.Y., Kim S.H., Moon M. H. Head-to-Head Comparison Between Biparametric and Multiparametric MRI for the Diagnosis of Prostate Cancer: A Systematic Review and Meta-Analysis // Am. J. Roentgenol. – 2018. – Vol. 211(5). – P. W226-W241. https://doi.org/10.2214/ajr.18.19880
  12. Kang Z., Min X., Weinreb J., Li Q., Feng Z., Wang L. Abbreviated Biparametric Versus Standard Multiparametric MRI for Diagnosis of Prostate Cancer: A Systematic Review and Meta-Analysis // Am. J. Roentgenol. – 2019. – Vol. 212 (2). – P. 357-365. https://doi.org/10.2214/ajr.18.20103
  13. Monni F., Fontanella P., Grasso A., Wiklund P., Ou Y.C., Randazzo M., Bianchi G. Magnetic resonance imaging in prostate cancer detection and management: a systematic review // Minerva Urol. Nephrol. – 2017. – Vol. 69(6). – P.567–578. https://doi.org/10.23736/s0393-2249.17.02819-3
  14. Xu L., Zhang G., Shi B., Liu Y., Zou T., Yan W., Sun H. Comparison of biparametric and multiparametric MRI in the diagnosis of prostate cancer // Cancer Imaging – 2019. – Vol. 19(1). – Art. no. 90. https://doi.org/10.1186/s40644-019-0274-9
  15. Koo J.H., Kim C.K., Choi D., Park B.K., Kwon G.Y., Kim B. Diffusion-Weighted Magnetic Resonance Imaging for the Evaluation of Prostate Cancer: Optimal B Value at 3T // Korean J. Radiol. – 2013. – Vol. 14(1). – P. 61-69. https://doi.org/10.3348/kjr.2013.14.1.61
  16. Rosenkrantz A.B., Hindman N., Lim R.P., Das K., Babb J.S., Mussi T.C., Taneja S.S. Diffusion-weighted imaging of the prostate: Comparison of b1000 and b2000 image sets for index lesion detection // JMRI. – 2013. – Vol. 38(3). – P. 694-700. https://doi.org/10.1002/jmri.24016
  17. Ueno Y., Takahashi S., Kitajima K., Kimura T., Aoki I., Kawakami F., Sugimura K. Computed diffusion-weighted imaging using 3-T magnetic resonance imaging for prostate cancer diagnosis // Eur. Radiol. – 2013. – Vol. 23(12). – P. 3509-3516. https://doi.org/10.1007/s00330-013-2958-z
  18. Manenti G., Nezzo M., Chegai F., Vasili E., Bonanno E., Simonetti G. DWI of prostate Optimal b-Value in Clinical Practice // Prostate Cancer. – 2014. – Vol. 2014. – P. 1-9. https://doi.org/10.1155/2014/868269
  19. Bratan F., Niaf E., Melodelima C., Chesnais A.L., Souchon R., Mège-Lechevallier F., Rouvière, O. Influence of imaging and histological factors on prostate cancer detection and localisation on multiparametric MRI: a prospective study // Eur. Radiol. – 2013. – Vol. 23(7). – P. 2019-2029. https://doi.org/10.1007/s00330-013-2795-0
  20. Le J.D., Tan N., Shkolyar E., Lu D.Y., Kwan L., Marks L.S., Reiter R.E. Multifocality and Prostate Cancer Detection by Multiparametric Magnetic Resonance Imaging: Correlation with Whole-mount Histopathology // Eur. Urol. – 2015. – Vol. 67(3). – P. 569-576. https://doi.org/10.1016/j.eururo.2014.08.079
  21. Barbieri S., Brönnimann M., Boxler S., Vermathen P., Thoeny H.C. Differentiation of prostate cancer lesions with high and with low Gleason score by diffusion-weighted MRI // Eur. Radiol. – 2017. – Vol. 27(4). – P. 1547-1555. https://doi.org/10.1007/s00330-016-4449-5

Error: Contact form not found.