QUANTIFICATION OF DNA DOUBLE-STRAND BREAKS IN BENIGN AND MALIGNANT BREAST DISEASES

G.A. Smagulova 1, M.A. Aitmagambetova 1, G.V. Veklenko 1, N.M. Kereeva 1, A.N. Zheksenova 1, A. Amanzholkyz 1, A.B. Tulyaeva 1, G.B. Bakytzhanov 1

1. «West Kazakhstan Marat Ospanov Medical University» NSJSC, Aktobe, the Republic of Kazakhstan

DOI: https://www.doi.org/10.52532/2521-6414-2023-2-68-28-35

UDC: 618.19-006:577.21

Year: 2023 issure: 68 number: 2 pages: 28-35

Download PDF:

ABSTRACT

Relevance: Double-strand DNA breaks are the most dangerous DNA damage. Analysis of foci of phosphorylated histone protein H2AX (γH2AX) is currently the most sensitive method for detecting DNA double-strand breaks. This protein modification can become a biomarker of cellular stress, especially in diagnosing and monitoring neoplastic diseases. In this study, we utilized novel pattern recognition algorithms on the AKLIDES® platform to automatically analyze immunofluorescent images of γH2AX foci and compare the results with visual scores. The γH2AX foci formation on peripheral blood mononuclear cells of women with breast cancer or benign breast tumors was studied.
The article aimed to quantify DNA double-strand breaks in peripheral blood lymphocytes in women with breast cancer and benign breast masses to identify a possible biomarker.
Methods: γ-H2AX foci in lymphocytes were analyzed using the automated AKLIDES system in patients with breast cancer (n=29) and benign breast tumors (n=24).
Results: When comparing the indicators of the main and control groups in the channel of ruptures “FITC,” a statistically significant difference was found in the indicators “Foci dia” (p=0.0382), “Focilnt mean” (p=0.0166), “Colocalisation” (p=0.0486). In the repair channel “AРС,” significant differences were found in the indicators “Nuclei BGInt” (p=0.0166) and the indicator “Focilnt mean” (p=0.0118).
Conclusion: The revealed changes of DNA double-strand breaks along the FITC break channels and APC repair between the main and control groups can possibly serve as a breast cancer diagnostic marker.
Keywords: DNA double-strand breaks, H2AX histone protein, breast cancer.

List of sources used:

  1. Shah R., Rosso K., Nathanson S.D. Pathogenesis, prevention, diagnosis and treatment of breast cancer //  World J. Clin. Oncol. –  2014. – Vol. 5(3). – P. 283-298. https://doi.org/10.5306/wjco.v5.i3.283
  2. Varvara P.V., Karaolanis G., Valavanis C., Stanc G., Tzaida O., Trihia H., Patapis P., Dimitroulis D., Perrea D. gamma-H2AX: A potential biomarker in breast cancer // Tumor Biology. – 2019. – Vol. 41(9). https://doi.org/10.1177/1010428319878536
  3. Vítor A.C., Huertas P., Legube G., de Almeida S.F. Studying DNA Double-Strand Break Repair: An Ever-Growing Toolbox // Front. Mol. Biosci. – 2020. – Vol. 21(7). – Art. no. 24. https://doi.org/10.3389/fmolb.2020.00024
  4. Palla V.V., Karaolanis G., Katafigiotis I., Anastasiou I., Patapis P., Dimitroulis D., Perrea D. gamma-H2AX: Can it be established as a classical cancer prognostic factor? // Tumor Biol. – 2017. – Vol. 39(3). https://doi.org/10.1177/1010428317695931
  5. Ma A., Dai X. The relationship between DNA single-stranded damage response and double-stranded damage response // Cell Cycle. – 2018. – Vol. 17(1). – P. 73-79. https://doi.org/10.1080/15384101.2017.1403681
  6. Sekiguchi M., Matsushita N. DNA Damage Response Regulation by Histone Ubiquitination // Int. J. Mol. Sci. – 2022. – Vol. 23(15). – Art. no. 8187. https://doi.org/10.3390/ijms23158187
  7. Aquila L., Atanassov B.S. Regulation of Histone Ubiquitination in Response to DNA Double Strand Breaks // Cells. – 2020. – Vol. 9(7). – Art. no. 1699. https://doi.org/10.3390/cells9071699
  8. Hopp N., Hagen J., Aggeler B., Kalyuzhny A.E. Express γ-H2AX Immunocytochemical Detection of DNA Damage // Methods Mol. Biol. – 2017. – Vol. 1644. – P. 123-128. https://doi.org/10.1007/978-1-4939-7187-9_10
  9. Shah K., Boghozian R.A., Kartsonaki C., Shah K.A., Vallis K.A. γH2AX expression in cytological specimens as a biomarker of response to radiotherapy in solid malignancies // Diagn. Cytopathol. – 2016. – Vol. 44(2). – P. 141-146. https://doi.org/10.1002/dc.23396
  10. Solarczyk K., Kordon-Kiszala M. Let’s not take DNA breaks for granted. The importance of direct detection of DNA breaks for the successful development of DDR inhibitors // Front. Cell. Dev. Biol. – 2023. – Vol. 9(11). – P. 1118716. https://doi.org/10.3389/fcell.2023.1118716
  11. Van Oorschot B., Hovingh S., Dekker A., Stalpers L.J., Franken N.A. Predicting Radiosensitivity with Gamma-H2AX Foci Assay after Single High-Dose-Rate and Pulsed Dose-Rate Ionizing Irradiation // Radiat. Res. – 2016. – Vol. 185(2). – P. 190-198. https://doi.org/10.1667/RR14098.1
  12. Zhao H., Qu M., Li Y., Wen K., Xu H., Song M., Xie D., Ao X., Gong Y., Sui L., Guan H., Zhou P., Xie J. An estimate assay for low-level exposure to ionizing radiation based on mass spectrometry quantification of γ-H2AX in human peripheral blood lymphocytes // Front. Public Health. – 2022. – Vol. 28(10). – P. 1031743. https://doi.org/10.3389/fpubh.2022.1031743
  13. Bizzaro N., Antico A., Platzgummer S., Tonutti E., Bassetti D., Pesente F., Tozzoli R., Tampoia M., Villalta D. Automated antinuclear immunofluorescence antibody screening: a comparative study of six computer-aided diagnostic systems // Autoimmun. Rev. – 2014. – Vol. 13. – P. 292-298. https://doi.org/10.1016/j.autrev.2013.10.015
  14. Köcher S., Volquardsen J., Perugachi Heinsohn A., Petersen C., Roggenbuck D., Rothkamm K., Mansour W.Y. Fully automated counting of DNA damage foci in tumor cell culture: A matter of cell separation // DNA Repair (Amst). – 2021. – Vol. 102. – Art. no. 103100. https://doi.org/10.1016/j.dnarep.2021.103100
  15. Kudabayeva K., Kosmuratova R., Bazargaliyev Y., Sartayeva A., Kereyeva N. Effects of metformin on lymphocyte DNA damage in obese individuals among Kazakh population // Diabetes Metab. Syndr. – 2022. – Vol. 16(8). – Art. no. 102569. https://doi.org/10.1016/j.dsx.2022.102569
  16. Hohmann T., Kessler J., Grabiec U., Bache M., Vordermark D., Dehghani F. Automatic detection of DNA double strand breaks after irradiation using an γH2AX assay // Histol. Histopathol. – 2018. – Vol. 33(5). – P. 475-485. https://doi.org/10.14670/HH-11-945
  17. Cinquanta L., Bizzaro N., Pesce G. Standardization and Quality Assessment Under the Perspective of Automated Computer-Assisted HEp-2 Immunofluorescence Assay Systems // Front. Immunol. – 2021. – Vol. 25(12). – P. 638863. https://doi.org/10.3389/fimmu.2021.638863
  18. Memmel S., Sisario D., Zimmermann H., Sauer M., Sukhorukov V.L., Djuzenova C.S., Flentje M. FocAn: automated 3D analysis of DNA repair foci in image stacks acquired by confocal fluorescence microscopy // BMC Bioinformatics. – 2020. – Vol. 21(1). – P. 27. https://doi.org/10.1186/s12859-020-3370-8
  19. Oberdoerffer P., Miller K.M. Histone H2A variants: Diversifying chromatin to ensure genome integrity // Semin. Cell Dev. Biol. – 2023. – Vol. 15(135). – P. 59-72. https://doi.org/10.1016/j.semcdb.2022.03.011
  20. Wang B., Zhang Z., Xia S., Jiang M., Wang Y. Expression of γ-H2AX and patient prognosis in breast cancer cohort // J. Cell Biochem. – 2019. – Vol. 120. – P. 12958-12965. https://doi.org/10.1002/jcb.28567
  21. Danese E., Lippi G., Buonocore R., Benati M., Bovo C.., Bonaguri C., Salvagno G.L., Brocco G., Roggenbuck D., Montagnana M. Mobile phone radiofrequency exposure has no effect on DNA double strand breaks (DSB) in human lymphocytes // Ann. Transl. Med. – 2017. –Vol. 5(13). – P. 272. https://doi.org/10.21037/atm.2017.04.35
  22. Kozioł K., Zebrowski J., Betlej G., Bator E., Czarny W., Bajorek W., Czarnota B., Czaja R., Król P., Kwiatkowska A. Reliability of a Fully Automated Interpretation of γ -H2AX Foci in Lymphocytes of Moderately Trained Subjects under Resting Conditions // J. Nutr. Metab. – 2014. – Vol. 2014. – Art. no. 478324. https://doi.org/10.1155/2014/478324
  23. Нурахова А.Д., Маймакова А.М., Абдилова Г.Б. Опыт применения аппарата «Аклидес» в Казахстане для диагностики системных аутоиммунных заболеваний // Вестник хирургии Казахстана. – 2019. – №3. – С. 10-17 [Nuraxova A.D., Majmakova A.M., Abdilova G.B. Opyt primeneniya apparata «Aklides» v Kazaxstane dlya diagnostiki sistemnyx autoimmunnyx zabolevanij // Vestnik xirurgii Kazaxstana. – 2019. – №3. – S. 10-17 (in Russ.)]. https://vhk.kz/wp-content/uploads/2021/04/vestnik3201920.pdf
  24. Fraser C.G. Biological variation: a rapidly evolving aspect of laboratory medicine // J. Lab. Precis. Med. – 2017. – Vol. 2. – P. 35 https://doi.org/10.21037/jlpm.2017.06.09
  25. Wiwanitkit V. Errors in medical laboratory but still forgotten // J. Lab. Precis. Med. – 2017. – Vol. 2. – P. 65. https://doi.org/10.21037/jlpm.2017.08.01
  26. Zhang Z. The role of big-data in clinical studies in laboratory medicine // J. Lab. Precis. Med. – 2017. – Vol. 2. – P. 34. https://doi.org/10.21037/jlpm.2017.06.07

Error: Contact form not found.