CARCINOGENICITY OF IONIZING RADIATION: A LITERATURE REVIEW

Y.M. Iztleuov1, M.K. Iztleuov1, A.E. Elubaeva1, A.B. Tulyaeyva1, N.A. Abenova1

1. «Marat Ospanov West Kazakhstan Medical University» NJSC, Aktobe, the Republic of Kazakhstan

DOI: https://www.doi.org/10.52532/2521-6414-2023-4-70-39-45

UDC: 616-006:544.54

Year: 2023 issure: 70 number: 4 pages: 39-45

Download PDF:

ABSTRACT

Relevance: According to WHO, malignant neoplasms rank second in population mortality structure due to a constantly increasing influence of technogenic factors that have a direct carcinogenic effect on the body and suppress defense mechanisms. Ionizing radiation plays a special role in the development of cancer. It is used in industry, agriculture, medicine, and scientific research as a diagnostic tool in modern healthcare and radiation therapy for cancer treatment. The consequences of radiation influence are not only the result of a direct effect on the body but also a delayed one through generations of parents and grandparents. According to the radiobiological hypothesis, any level of radiation, no matter how small, poses a risk of long-term consequences, including cancer, in exposed people and their descendants of the first two generations. That is, cancerous tumors are likely consequences of the influence of radiation. Despite various theories of the biological effect of low doses of ionizing radiation, most authors attach primary importance to DNA damage in the manifestation of genetic effects (the concept of non-threshold mutational action).
The study aimed to highlight the role of ionizing radiation in tumorigenesis.
Methods: Data from MEDLINE, Embase, Scopus, PubMed, Cochrane Central Register of Controlled Trials was analyzed to select and analyze relevant information over the past 10 years using the keywords: gamma irradiation, spontaneous oncogenesis, prevention of oncogenesis.
Results: Radiation exposure may increase the risk of cancer development due to epigenetic changes leading to increased genomic instability (GI) and/or specific suppression of tumor suppressor genes. Changes in the TP53 gene network expression occur; the most significant genes as predictors of carcinogenesis are ST13, IER3, BRCAI, LRDD, and MRAS. Epigenetic changes also influence individual susceptibility to radiation-induced cancer. In addition to the mutagenic effects of ROS and AFN, there is also evidence that oxidative stress plays a fundamental role in epigenetic modifications.
Conclusion: As a result of radiation exposure, damage occurs that causes genetic and epigenetic changes, leading to changes in the level of protein expression due to changes in the methylation of cytosine residues in DNA, modification of histones, and regulation of microRNA expression.
Keywords: gamma irradiation, spontaneous oncogenesis, prevention of oncogenesis.

List of sources used:

  1. Савилов Е.Д., Брико Н.И., Колесников С.И. Эпидемиологические аспекты экологических проблем современности // Гигиена и санитария. – 2020. – Т.99, №2. – С. 134-139 [Savilov E.D., Briko N.I., Kolesnikov S.I. Savilov E.D., Briko N.I., Kolesnikov S.I. Epidemiologicheskie aspekty ekologicheskih problem sovremennosti // Gigiena i sanitariya. – 2020. – T.99, №2. – S. 134-139 (in Russ.)]. http://dx.doi.org/10.33029/0016-9900-2020-99-2-134-139
  2. Апсаликов Б.А., Манамбаева З.А., Адылханов Т.А., Хамитова М.О., Омиртаев А.А. Молекулярно-генетические и радиационные факторы риска развития рака молочной железы (обзор литературы) // Вестник КазНМУ. – 2016. – №1. – С. 215-219 [Apsalikov B.A., Manambaeva Z.A., Adylhanov T.A., Hamitova M.O., Omirtaev A.A. Molekulyarno-geneticheskie i radiacionnye faktory riska razvitiya raka molochnoj zhelezy (obzor literatury) // Vestnik KazNMU. – 2016. – №1. – S. 215-219 (in Russ.)]. https://cyberleninka.ru/article/n/molekulyarno-geneticheskie-i-radiatsionnye-faktory-riska-razvitiya-raka-molochnoy-zhelezy-obzor-literatury
  3. Калинкин Д. Е., Карпов А. Б., Тахауов Р. М., Самойлова Ю. А., Кострыкина Е. В. Исследование риска смерти от злокачественных новообразований у лиц, подвергавшихся долговременному профессиональному облучению // Сиб. Ж. Клин. Эксперим. Мед. – 2013. – Т. 28(2). – С. 108-114 [Kalinkin D. E., Karpov A. B., Tahauov R. M., Samojlova Yu. A., Kostrykina E. V. Issledovanie riska smerti ot zlokachestvennyh novoobrazovanij u lic, podvergavshihsya dolgovremennomu professional’nomu oblucheniyu // Sib. Zh. Klin. Eksperim. Med. – 2013. – T. 28(2). – S. 108-114 (in Russ.)]. https://cyberleninka.ru/article/n/issledovanie-riska-smerti-ot-zlokachestvennyh-novoobrazovaniy-u-lits-podvergavshihsya-dolgovremennomu-professionalnomu-oblucheniyu
  4. Масалимов Е.Т. Общая смертность экспонированного радиацией населения Восточно-Казахстанской области через 20 лет после закрытия Семипалатинского полигона // Известия вузов (Кыргызстан). – 2013. – Т. 3. – С. 88-90 [Masalimov E.T. Obshchaya smertnost’ eksponirovannogo radiaciej naseleniya Vostochno-Kazahstanskoj oblasti cherez 20 let posle zakrytiya Semipalatinskogo poligona // Izvestiya vuzov (Kyrgyzstan). – 2013. – T. 3. – S. 88-90 (in Russ.)]. https://elibrary.ru/item.asp?id=25112932
  5. Окунев А.М., Копытова В.Н. Современные концепции действия малых доз ионизирующего излучения на животных и человека // Вестник Гос. Аграр. Унив-та Сев. Зауралья. – 2014. – Т. 26(3). – С. 36-41 [Okunev A.M., Kopytova V.N. Sovremennye koncepcii dejstviya malyh doz ioniziruyushchego izlucheniya na zhivotnyh i cheloveka // Vestnik Gos. Agrar. Univ-ta Sev. Zaural’ya. – 2014. – T. 26(3). – S. 36-41 (in Russ.)]. https://elibrary.ru/item.asp?id=22825991
  6. Шабдарбаева Д.М., Узбекова Д.Е., Раханская Е.В., Нуранбаева А.С., Серкиз О.А., Капезов Н.А. Иммунный статус лиц, подвергавшихся радиационному воздействию (литературный обзор) // Int. Sci. Pract. Conf. “World Science”. – 2016. – Т. 3(6). – С. 57-60 [Shabdarbaeva D.M., Uzbekova D.E., Rahanskaya E.V., Nuranbaeva A.S., Serkiz O.A., Kapezov N.A. Immunnyj status lic, podvergavshihsya radiacionnomu vozdejstviyu (literaturnyj obzor) // Int. Sci. Pract. Conf. “World Science”. – 2016. – T. 3(6). – S. 57-60 (in Russ.)]. https://cyberleninka.ru/article/n/immunnyy-status-lits-podvergavshihsya-radiatsionnomu-vozdeystviyu-literaturnyy-obzor
  7. Соснина С.Ф., Сокольников М.Э. Наследуемые эффекты у потомков, связанные с вредным воздействием на родителей (обзор литературы) // Радиац. Гигиена. – 2019. – Т. 3(9). – С. 84-95 [Sosnina S.F., Sokol’nikov M.E. Nasleduemye effekty u potomkov, svyazannye s vrednym vozdejstviem na roditelej (obzor literatury) // Radiac. Gigiena. – 2019. – T. 3(9). – S. 84-95 (in Russ.)]. https://doi.org/10.21514/1998-426X-2019-12-3-84-95
  8. Балева Л.С., Сипягина А.Е. Предикторы риска формирования радиационно-индуцированных стохастических заболеваний в поколениях детей из семей облученных родителей – актуальная проблема современности // Росс. Вестник Перинатол. Педиатр. – 2019. – Т.64(1). – С. 7-14 [Baleva L.S., Sipyagina A.E. Prediktory riska formirovaniya radiacionno-inducirovannyh stohasticheskih zabolevanij v pokoleniyah detej iz semej obluchennyh roditelej – aktual’naya problema sovremennosti // Ross. Vestnik Perinatol. Pediatr. – 2019. – T.64(1). – S. 7-14 (in Russ.)]. https://cyberleninka.ru/article/n/prediktory-riska-formirovaniya-radiatsionno-indutsirovannyh-stohasticheskih-zabolevaniy-v-pokoleniyah-detey-iz-semey-obluchennyh
  9. Schubauer-Berigan M.K., Daniels R.D., Bertke S.J., Tseng C.-Y., Richardson D.B. Cancer Mortality through 2005 among a Pooled Cohort of U.S. Nuclear Workers Exposed to External Ionizing Radiation // Radiat. Res. – 2015. – Vol. 183(6). – P. 620–631. https://doi.org/10.1667/RR13988.1
  10. Yoshida K., French B., Yoshida N., Hida A., Ohishi W., Kusunoki Y. Radiation exposure and longitudinal changes in peripheral monocytes over 50 years: the Adult Health Study of atomic-bomb survivors // Br. J. Hematol. – 2019. – Vol. 185. – P. 107-115. https://doi.org/10.1111/bjh.15750
  11. Timp W., Feinberg A.P. Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host // Nat. Rare Cancer. – 2013. – Vol. 13. – P. 497-510. https://doi.org/10.1038/nrc3486
  12. Kim J.G., Park M.T., Heo K., Yang K.M., Yi J.M. Epigenetics Meets Radiation Biology as a New Approach in Cancer Treatment // Int. J. Mol. Sci. – 2013. – Vol. 14. – P. 15059-15073. https://doi.org/10.3390/ijms140715059
  13. Hughes L.A.E., Simons C.C.J.M., van den Brandt P.A., van Engeland M., Weijenberg M.P. Lifestyle, Diet, and Colorectal Cancer Risk According to (Epi)genetic Instability: Current Evidence and Future Directions of Molecular Pathological Epidemiology // Curr. Colorect. Cancer Rep. – 2017. – Vol. 13. – P. 455-469. https://link.springer.com/article/10.1007/s11888-017-0395-0
  14. Apprey V., Wang S., Tang W., Kittles R., Ittmann M., Kwabi B. Association of Genetic Ancestry With DNA Methylation Changes in Prostate Cancer Disparity // Anticancer Res. – 2019. – Vol. 39. – P. 5861-5866. https://doi.org/10.21873/anticanres.13790
  15. Schmid T.E., Brinkworth M.H. Responses to genotoxicity in mouse testicular germ cells and epididymal spermatozoa are affected by increased age // Toxicol. Let. – 2019. – Vol. 310. – P. 1-6. http://ray.yorksj.ac.uk/id/eprint/3810/
  16. Erichsen L., Beermann A., Arauzo-Bravo M.J., Hassan M., Dkhil M.A. Genome-wide hypomethylation of LINE-1 and Alu retroelements in cell-free DNA of blood is an epigenetic biomarker of human aging // Saudi J. Biol. Sci. – 2018. – Vol. 25(6). – P. 1220-1226. https://doi.org/10.1016/j.sjbs.2018.02.005
  17. Han J., Chen M., Fang Q., Zhang Y., Wang Y., Esma J., Qiao H. Prediction of the Prognosis Based on Chromosomal Instability-Related DNA Methylation Patterns of ELOVL2 and UBAC2 in PTCs // Mol. Ther. Nucleic Acids. – 2019. – Vol. 18. – P. 650-660. https://doi.org/10.1016/j.omtn.2019.09.027
  18. Sarni D., Kerem B. Oncogene-Induced Replication Stress Drives Genome Instability and Tumorigenesis // Int. J. Mol. Sci. – 2017. – Vol. 18(7). – P. 1339. https://doi.org/10.3390/ijms18071339
  19. Hergalant S., Saurel C., Divoux M., Rech F., Pouget C., Godfraind C. Correlation between DNA Methylation and Cell Proliferation Identifies New Candidate Predictive Markers in Meningioma // Cancers. – 2022. – Vol. 14. – P. 6227-6249. https://doi.org/10.3390/cancers14246227
  20. Durso D.F., Bacalini M.G., Fariado Valle I., Pirazzini C., Bonafe M., Castellani G., Caetano Faria A.M., Franceschi C., Garagnani P., Nardini C. Aberrant methylation patterns in colorectal cancer: A meta-analysis // Oncotarget. – 2017. – Vol. 8. – P. 12820-12830. https://doi.org/10.18632/oncotarget.14590
  21. Mutize T., Mkandla Z., Nkambule B.B. Global and gene-specific DNA methylation in adult type 2 diabetic individuals: a protocol for a systematic review // Syst. Rev. – 2018. – Vol. 7. – P. 46. https://doi.org/10.1186/s13643-018-0708-7
  22. Silva I.R., Ramos M.C.A.S., Arantes L.M.R.B., Lengert A.V.H., Oliveira M.A., Cury F.P., Martins Pereira G., Santos A.G., Barbosa F. Jr. Evaluation of DNA Methylation Changes and Micronuclei in Workers Exposed to a Construction Environment // Int. J. Environ. Res. Public Health. – 2019. – Vol. 16(6). – P. 902. https://doi.org/10.3390/ijerph16060902
  23. Jargin S.V. Renal Cell Carcinoma after Chornobyl: on the Role of Radiation vs. Late Detection // Pathol. Oncol. Res. – 2015. – Vol. 21. – P. 845–846. https://doi.org/10.1007/s12253-014-9787-5
  24. Lee Y., Kim Y.J., Choi Y.J., Lee J.W., Lee S., Cho Y.H. Radiation-induced changes in DNA methylation and their relationship to chromosome aberrations in nuclear power plant workers // Int. J. Radiat. Biol. – 2015. – Vol. 91(2). – P. 142-149 https://doi.org/10.3109/09553002.2015.969847
  25. Mukherjee D., Coates P.J., Lorimore S.A., Wright E.G. Responses to ionizing radiation mediated by inflammatory mechanisms // J. Pathol. – 2013. – Vol. 232 (3). – P. 283-291. https://doi.org/10.1002/path.4299
  26. Madakashira B.P., Sadler K.C. DNA Methylation, Nuclear Organization, and Cancer // Front. Genet. Sec. Epigenom. Epigenet. – 2017. – Vol. 8. – P. 76. https://doi.org/10.3389/fgene.2017.00076
  27. Rauen K.A., Schoyer L., Schill L., Stronach B., Albeck J., Andresen B.S., Cavé H., Ellis M., Fruchtman S.M. Proceedings of the fifth international RASopathies symposium: When development and cancer intersect // AJMJ. – 2018. – Vol. 176 (12). – P. 2924-2929. https://doi.org/10.1002/ajmg.a.40632
  28. Seibold P., Auvinen A., Averbeck D., Bourguignon M., Hartikainen J.M., Hoeschen C., Laurent O., Noël G., Sabatier L., Salomaa S., Blettner M. Clinical and epidemiological observations on individual radiation sensitivity // Int. J. Radiat.Biol. – 2020. – Vol. 96. – P. 324-339. https://www.tandfonline.com/irab20
  29. Miousse I.R., Chang J., Shao L., Pathak R., Nzabarushimana É., Kutanzi K.R., Landes R.D., Tackett A.J., Hauer-Jensen M., Zhou D. Inter-Strain Differences in LINE-1 DNA Methylation in the Mouse Hematopoietic System in Response to Exposure to Ionizing Radiation // Int. J. Mol. Sci. – 2017. – Vol. 18(7). – P. 1430. https://doi.org/10.3390/ijms18071430
  30. Miousse I.R., Chalbot M.C., Lumen A., Ferguson A., Kavouras L.G., Koturbash I. Response of a transposable element to environmental stressors // Mutat. Res. Rev. Mutat.Res. – 2015. – Vol. 765. – P. 19-39. https://doi.org/10.1016/j.mrrev.2015.05.003
  31. Merrifield M., Kovalchuk O. Epigenetics in radiation biology: a new research frontier // Front. Genet. – 2013. – Vol. 4. – P. 40. https://doi.org/10.3389/fgene.2013.00040
  32. Miousse I.R., Kutanzi K.R., Koturbash I. Effects of ionizing radiation on DNA methylation: from experimental biology to clinical applications // Int. J. Radiat. Biol. – 2017. – Vol. 93(5). – P. 457-469. https://doi.org/10.1080/09553002.2017.1287454
  33. Koturbash I., Fry M. Award Lecture: When DNA is actually not a Target: Radiation Epigenetics as a Tool to Understand and Control Cellular Response to Ionizing Radiation // Radiat. Res. – 2018. – Vol. 190. – P. 5-11. https://doi.org/10.1667/RR15027.1
  34. Ослина Д.С., Рыбкина В.Л., Азизова Т.В. Передача радиационно-индуцированной геномной нестабильности от облученных родителей потомкам // Мед. Радиол. Радиац. Безоп-ть. – 2022. – Т. 67(4). – С. 10-18 [Oslina D.S., Rybkina V.L., Azizova T.V. Peredacha radiacionno-inducirovannoj genomnoj nestabil’nosti ot obluchennyh roditelej potomkam // Med. Radiol. Radiac. Bezop-t’. – 2022. – T. 67(4). – S. 10-18 (in Russ.)]. https://doi.org/10.33266/1024-6177-2022-67-4-10-18
  35. Nomura T., Baleva L.S., Ryo H., Adachi S., Sipyagina A.E., Kazakhan N.M. Transgenerational effects of radiation on cancer and other disorders in mice and humans // J. Radiat. Cancer Res. – 2017. – Vol. 8 (3). – P. 123-134. https://doi.org/10.4103/jrcr.jrcr_30_17
  36. Рябченко Н.Н. Радиационно-индуцированная нестабильность генома человека // Пробл. Радіац. Мед. Радіобіол. – 2014. – Т. 19. – С. 48-58 [Ryabchenko N.N. Radiacionno-inducirovannaya nestabil’nost’ genoma cheloveka // Probl. Radіac. Med. Radіobіol. – 2014. – T. 19. – S. 48-58 (in Russ.)]. http://nbuv.gov.ua/UJRN/Prmtr_2014_19_7
  37. Ravanat J.-L., Breton J., Douki T., Gasparutto D., Grand A., Rachidi W. Radiation-mediated formation of complex DNA damage: a chemical aspect overview // Br. J. Radiol. – 2014. – Vol. 87. – P. 1035. https://doi.org/10.1259/bjr.20130715
  38. Lomax M.E., Folkes L.K., O’Neill P. Biological Consequences of Radiation-induced DNA Damage: Relevance to Radiotherapy // Clin. Oncol. – 2013. – Vol. 25(10). – P. 578-585. https://doi.org/10.1016/j.clon.2013.06.007
  39. Baiocco G., Bartzsch S., Conte V. A matter of space: how the spatial heterogeneity in energy deposition determines the biological outcome of radiation exposure // Radiat. Environ. Biophys. – 2022. – Vol. 61. – P. 545-559. https://doi.org/10.1007/s00411-022-00989-z
  40. Hagiwara Y., Oike T., Niimi A., Yamauchi M., Sato H., Limsirichaikul S., Held K.D., Nakano T., Shibata A. Clustered DNA double-strand break formation and the repair pathway following heavy-ion irradiation // J. Radiat. Res. – 2019. – Vol. 60(1). – P. 69-79. https://doi.org/10.1093/jrr/rry096
  41. Dauer L.T., Ainsbury E.A., Dynlacht J., Hoel D., Klein B.E.K., Mayer D. Guidance on radiation dose limits for the lens of the eye: an overview of the recommendations in NCRP Commentary No. 26 // Int. J. Radiat. Biol. – 2016. – Vol. 93(10). – P. 11015-1023. https://doi.org/10.1080/09553002.2017.1304669
  42. Балева Л.С., Сипягина А.Е., Яковлева И.Н., Карахан Н.М, Егорова Н.И., Землянская З.К. Иммунологические особенности нарушений у детей, проживающих в регионах с различных уровней радионуклидного загрязнения после аварии на Чернобыльской АЭС // Росс. Вестник Перинатол. Педиатр. – 2015. – Т. 60(3). – С. 81-88 [Baleva L.S., Sipyagina A.E., Yakovleva I.N., Karahan N.M, Egorova N.I., Zemlyanskaya Z.K. Immunologicheskie osobennosti narushenij u detej, prozhivayushchih v regionah s razlichnyh urovnej radionuklidnogo zagryazneniya posle avarii na Chernobyl’skoj AES // Ross. Vestnik Perinatol. Pediatr. – 2015. – T. 60(3). – S. 81-88 (in Russ.)]. https://cyberleninka.ru/article/n/immunologicheskie-osobennosti-narusheniy-u-detey-prozhivayuschih-v-regionah-s-razlichnym-urovnem-radionuklidnogo-zagryazneniya-posle
  43. Averbeck D., Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts // Int. J. Mol. Sci. – 2021. – Vol. 22(20). – P. 11047. https://doi.org/10.3390/ijms222011047
  44. Tharmalingam S., Srectharan S., Kulesza A.V., Boreham D.R., Tai T.C. Low-Dose ionizing Radiation Exposure, Oxidative Stress and Epigenetic Programming of Health and Disease // Radiat. Res. – 2017. – Vol. 188. – P. 525-528. https://doi.org/10.1667/RR14587.1
  45. Shrishrimal S., Kosmacek E.A., Oberley-Deegan R.E. Reactive Oxygen Species Drive Epigenetic Changes in Radiation-Induced Fibrosis // Oxid. Med. Cell. Longe. – 2019. – Vol. 6. – P. 356-361. https://doi.org/10.1155/2019/4278658
  46. García-Guede Á., Vera O., Ibáñez-de-Caceres I. When Oxidative Stress Meets Epigenetics: Implications in Cancer Development // Antioxidants. – 2020. – Vol. 9(6). – P. 468. https://doi.org/10.3390/antiox9060468
  47. Klaunig J.E. Oxidative Stress, and Cancer // Curr. Pharm. Des. – 2018. – Vol. 24(40). – P. 4771-4778(8). https://doi.org/10.2174/1381612825666190215121712
  48. Гончарова Т.Г., Кайдарова Д.Р., Кадырбаева Р.Е., Оразгалиева М.Г., Адилбай Д.Г., Cheishvili D., Vaisheva F., Szyf M. Разработка метода ранней диагностики рака легких на основе метилирования клеток мононуклеарной фракции крови // Онкология и радиология Казахстана. – 2020. – №3 (57) – С. 13-20 [Goncharova T.G., Kaidarova D.R., Kadyrbaeva R.E., Orazgaliyeva M.G., Adilbaj D.G., Cheishvili D., Vaisheva F., Szyf M. Razrabotka metoda rannej diagnostiki raka legkih na osnove metilirovaniya kletok mononuklearnoj frakcii krovi // Onkologiya i radiologiya Kazahstana, 2020. – №3 (57) – S. 13-20 (in Russ.)]. https://oncojournal.kz/docs/2020-god-vypusk-57-nomer-3_15-22.pdf
  49. Kadyrbayeva R., Askandirova A., Omarbayeva N., Adylbai D., Goncharova T., Orazgalieva M. Epigenetic research in diagnosis and treatment of lung cancer. Literature review // Онкология и радиология Казахстана. – 2020. – №3 (57). – С. 44-47. https://oncojournal.kz/docs/2020-god-vypusk-57-nomer-3_46-49.pdf
  50. Гончарова Т.Г., Омарбаева Н.А., Кайдарова Д.Р., Оразгалиева М.Г., Малышева Л.А. Особенности метилирования CpG-сайтов некоторых генов Т-лимфоцитов периферической крови пациентов с раком молочной железы до и после лечения // Успехи молекулярной онкологии. – 2023. – Т. 10, №2. – С. 90-99 [Goncharova T.G., Omarbaeva N.A., Kajdarova D.R., Orazgalieva M.G., Malysheva L.A. Osobennosti metilirovaniya CpG-sajtov nekotoryx genov T-limfocitov perifericheskoj krovi pacientov s rakom molochnoj zhelezy do i posle lecheniya // Uspexi molekulyarnoj onkologii. – 2023. – T. 10, №2. – S. 90-99 (in Russ.)]. https://doi.org/10.17650/2313-805X-2023-10-2-90-99
  51. Kietzmann T., Petry A., Shvetsova A., Gerhold J.M., Gorlach A. The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system // Br. J. Pharmacol. – 2017. – Vol. 174. – P. 1533-1554. https://doi.org/10.1111/bph.13792
  52. Wang S., Wu W., Claret F.X. Mutual regulation of microRNAs and DNA methylation in human cancers // Epigenetics. – 2017. – Vol. 12. – P. 187-197. https://doi.org/10.1080/15592294.2016.1273308
  53. Huan T., Mendelson M., Jochanes R., Yao C., Liu C., Song C., Bhattacharya A., Rong J., Tanriverdi K., Keefe J. Epigenome-wide association study of DNA methylation and microRNA expression highlights novel pathways for human complex traits // Epigenetics. – 2020. – Vol. 15. – P. 183-198. https://doi.org/10.1080/15592294.2019.1640547
  54. Adewoye A., Lindsay S., Dubrova Y. The genome-wide effects of ionizing radiation on mutation induction in the mammalian germline // Nat. Comm. – 2015. – Vol. 6. – P. 6684. https://doi.org/10.1038/ncomms7684
  55. Chen D., Jin C. Histone variants in environmental – stress-induced DNA damage repair // Mutat. Res. – 2019. – Vol. 780. – P. 55-60. https://doi.org/10.1016/j.mrrev.2017.11.002

Error: Contact form not found.