THE IMPACT OF COVID-19 ON THE INCIDENCE OF RECTAL CANCER IN KAZAKHSTAN: RESULTS OF COMPONENT ANALYSIS

1Central Asian Institute for Medical Research, Nur-Sultan, the Republic of Kazakhstan; 2Astana Medical University, Nur-Sultan, the Republic of Kazakhstan; 3Eurasian Institute for Cancer Research, Bishkek, the Kyrgyz Republic; 4Akhunbaev Kyrgyz State Medical Academy, Bishkek, the Kyrgyz Republic; 5Khoja Akhmet Yassawi International Kazakh-Turkish University, Shymkent, the Republic of Kazakhstan; 6Astendiyarov Kazakh National Medical University, Almaty, the Republic of Kazakhstan

ABSTRACT

Relevance: Every year, 732,210 new cases of RC are registered globally, with an incidence of 7.6 per 100,000. The COVID-19 pandemic has affected the screening, case detection, and referral of patients with an asymptomatic cancer diagnosis.

The aim was to assess the trends in rectal cancer incidence in the entire population of Kazakhstan before and during the COVID-19 pandemics.

Methods: The data obtained from the Ministry of Healthcare of the Republic of Kazakhstan concerning RC (Form no. 7) was retrospectively studied by descriptive and analytical epidemiology methods. The component method was used to analyze RC incidence dynamics based on the number of cases from 2010 to 2020.

Results: From 2010 to 2020, the risk of getting RC went down. An increase in incidence in 2010-2020 (+24.8%) was lower than in the preCOVID period of 2010-2019 (+37.2%). We found a sharp decrease in RC incidence from 2019 to 2020. The overall decrease was 0.89‰ due to changes in the age structure of the population (∑Δa=+0.13‰), the risk of getting RC (∑AR=−1.02‰), and the combined impact of age structure and the risk of getting RC (∑ΔaR=−0.002‰). According to the component analysis, 1,662 patients with RC were expected in 2020; instead, only 1,471 cases were registered. Such a decline in cases was mainly due to a reduced risk of getting RC.

Conclusions: The analysis of RC incidence trends in Kazakhstan shows a negative impact of COVID-19 on cancer care indicators and effectiveness. All oncological examinations were strengthened with the resumption of work after COVID restrictions. However, the number of screening visits remains lower than in previous years. Untimely diagnosis can increase the number of cases of late-stage CRC and an overall loss of years of life due to the lack of proper treatment. However, these forecasts can be mitigated by proper follow-up.

Keywords: rectal cancer (RC), incidence, trends, COVID-19, Kazakhstan.

Introduction: According to the latest WHO data (2020), colorectal cancer (CRC) is the 3rd most common globally, with an incidence of 19.5 per 100,000. The number of patients with rectal cancer (RC) was 732,210 cases, with an incidence of 7.6 per 100,000 [1]. RC differs from colon cancer due to the narrow anatomical boundaries of the pelvis, the proximity of the genitourinary organs and nerves, and the mechanism of the anal sphincter. The 5-year survival rate in general for RC (all stages) is about 53%, and unfortunately, it remains low, despite progress in diagnostic and therapeutic measures [2].

Population screening plays an essential role in detecting pathology and increasing morbidity rates. The COVID-19 pandemic has affected the screening, case detection, and referral of patients with symptomatic cancer [3]. National professional societies have issued recommendations (the American Society of Clinical Oncology, the American Society of Breast Surgeons, the American College of Radiology, and the American Society of Colposcopy and Cervical Pathology) to postpone regular cancer screening until medical institutions resume preventive visits [4-6]. Patients with well-recognized alarming symptoms, such as rectal bleeding, will continue to seek primary care. However, when COVID-19 is at the forefront, patients may not pay due attention to the vague primary symptoms of cancer, such as fatigue, changes in bowel function, and weight loss [7]. Years before the pandemic, the rates of population screening for CRC among adults with an average age-appropriate risk increased [8]. During the pandemic, an analysis of national cancer screening schemes revealed a sharp 86% drop in the rates for CRC screening [9].

In a recent study on CRC incidence in Kazakhstan, it was found that the incidence is 16.9 per 100,000 population and tends to increase [10]. Therefore, there is an interest in studying each section of the large intestine separately.

The study aimed to assess the trends in rectal cancer incidence in the entire population of Kazakhstan before and during the COVID-19 pandemics (2020).

Material and Methods: The material of the study was the data of the Ministry of Health (MoH) of the Republic of Kazakhstan concerning RC (Form no. 7). The retrospective study employed descriptive and analytical methods of epidemiology. The component method in this study was used to decompose the increase in the number of cases in the same population in different periods. There are seven components of the increase in the number of cases; the first three are associated with changes in the population,
its age structure, and a combined impact of these factors. The 4th component is an actual increase in the number of patients with oncological pathology due to a change in the morbidity risk index only. The other three components are associated with the risk of getting a malignant neoplasm, population growth, changes in its age structure, and the impact of all these three factors. Thus, the last four components are associated with an increase in the risk of developing the disease. The “risk of getting sick” covers the whole range of reasons that can increase, decrease, or stabilize morbidity rates [11]. The component method was used to analyze the dynamics of RC incidence based on the number of cases registered in 2010-2019, 2010-2020, and 2019-2020. Extensive and intensive indicators were calculated using the generally accepted methods of biomedical statistics [12, 13]. The annual averages (M), mean error (m), 95% confidence interval (95% CI), and average annual upward/downward rates (T%) were calculated.

The following symbols and abbreviations were used in this article: AN – absolute number; ASP (ΔA) – the age structure of the population; PN (ΔP) – population number; RAI (ΔP) – risk of getting RC; R² – the value of the approximation confidence; I – the incidence; ‰ – percent mille.

Results: During the study period (2010-2020), 15,552 new cases of RC were registered in the country. RC’s annual average incidence in Kazakhstan amounted to 8.1±0.2‰ (95% CI=7.8-8.3) per 100,000 population. Over time, the index increased from 7.2±0.2‰ (95% CI=6.8-7.6) in 2010 to 7.8±0.2‰ (95% CI=7.4-8.2) in 2020, with a statistically significant difference (t=2.12; p=0.034) (Figure 1).

![Figure 1 – Trends of RC incidence in Kazakhstan, 2010-2020](image)

Table 1 – Influencing components on the number of cases of RC, 2010-2020

<table>
<thead>
<tr>
<th>Components of growth in the number of cases due to:</th>
<th>2010 to 2019</th>
<th>2010 to 2020</th>
<th>2019 to 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN %, growth to (n₂-n₁) to n₁</td>
<td>+158</td>
<td>+36.2</td>
<td>+176</td>
</tr>
<tr>
<td>% growth to (n₂-n₁) to n₁</td>
<td>+13.4</td>
<td>+60.2</td>
<td>+14.9</td>
</tr>
<tr>
<td>∑1-3 = +68.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Growth PN.</td>
<td>+126</td>
<td>+28.8</td>
<td>+141</td>
</tr>
<tr>
<td>2. Changes ASP.</td>
<td>+10.7</td>
<td>+48.2</td>
<td>+11.9</td>
</tr>
<tr>
<td>3. Combined effect of changes in PN+ASP.</td>
<td>+21</td>
<td>+7.2</td>
<td>+1.8</td>
</tr>
<tr>
<td>4. Change of RAI.</td>
<td>-51</td>
<td>-17.5</td>
<td>-4.3</td>
</tr>
<tr>
<td>5. Combined effect of changes of RAI+PN.</td>
<td>-8</td>
<td>-2.6</td>
<td>-0.6</td>
</tr>
<tr>
<td>6. Combined effect of changes of RAI+ASP.</td>
<td>+35</td>
<td>+8.0</td>
<td>+3.0</td>
</tr>
<tr>
<td>7. Combined effect of the changes RAI+PN+ASP.</td>
<td>+5</td>
<td>+1.1</td>
<td>+0.4</td>
</tr>
<tr>
<td>∑4-7 = +31.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>∑1-7 = +438</td>
<td>+37.2</td>
<td>+292</td>
<td>+24.8</td>
</tr>
<tr>
<td>Total ∑₁₋₇</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To identify the components that influenced the incidence of RC during this period, we will analyze the pre-COVID-19 period (2010 to 2019), the COVID-19 period (2019 and 2020), and the entire period in general (2010 to 2020) (see Table 1).
The total increase in the pre-COVID-19 period was +1.51‰ and depended on the changes in the age structure of the population (ΔA = +0.77‰), the risk of getting RC (ΔA = +0.52‰), and the combined impact of the age structure and the risk of getting RC (ΔAR = +0.22‰). At the same time, the average annual growth rate of the aligned indicator was T = +1.6%, and the approximation confidence value was close to 1 (R² = 0.694).

According to the calculations of the component analysis (2010-2019), considering all the above factors, 1,481 patients were expected in 2019. Still, the actual number of patients amounted to 1,617. The number of patients with RC in Kazakhstan grew from 2010 to 2019. After the component analysis, we attributed the growth in the number of patients mainly to the population growth, changes in the age structure, and changes in the risk of getting RC (see Table 1).

If we analyze the period from 2010 to 2020 (Table 1), we can see an increase in the number of patients but an apparent decrease in the risk of getting RC. An increase of cases by 24.8% was lower compared to an increase of 37.2% in 2010-2019.

Further comparing 2019 and 2020, we found that the incidence of RC has decreased dramatically. The total decrease was -0.89‰ and depended on changes in the age structure of the population (ΔA = +0.13‰), the risk of getting RC (ΔAR = -1.02‰) and the combined impact of the age structure and the risk of getting RC (ΔAR = -0.9‰). As you can see, the decrease was mainly affected by a lower risk of getting RC.

According to the calculations of the component analysis, 1,662 patients were expected in 2020. Instead, the number of patients decreased and amounted to 1,471. Thus, the RC incidence has decreased due to a lower risk of getting this disease (-11.6% of the total decrease by -9.0%) (see Table 1).

Discussion: Non-urgent laboratory and imaging tests and scheduled procedures were suspended worldwide to help medical institutions cope with the COVID-19 outbreak, avoid overwhelming the healthcare system, save resources, and reduce the risk of transmission [14]. Fear of infection could promote many deaths due to delays in diagnosing life-threatening diseases. These restrictions have also been introduced in our republic. As a result, as it turned out in our study, the number of detected cases of RC decreased in 2020. There is data on a significant decrease in the number of patients undergoing cancer screening tests; respectively, the number of subsequent diagnoses of cancerous and precancerous lesions during the COVID-19 pandemic was reduced [15-18].

Conclusion: Thus, the analysis of trends in rectal cancer incidence in Kazakhstan shows the negative impact of COVID-19 on the indicators and effectiveness of the cancer care service since the number of newly identified cases has decreased and the incidence declined. Ultimately, a decrease in the number of people undergoing screening might lead to delayed detection of precancerous lesions and CRC, thus increasing CRC incidence or the proportion of later stages at detection. With the resumption of work after the restrictions associated with COVID-19, all cancer screenings were intensified. However, the number of cancer screening visits remains significantly lower than in the previous years. The long-term consequences of a delay in diagnostics can lead to a devastating increase in the number of cases of late-stage CRC and an overall loss of years of life due to the lack of appropriate treatment for these patients. However, these forecasts can be mitigated if proper catch-up surveys are carried out.

References

COVID-19-дің ДЫН КАЗАХСТАНДАҒЫ ТІК ІШЕК ОБЫРЫНА ЭСЕРІ: КОМПОНЕНТТІК ТАЛДАУ НӘТИЖЕЛЕРІ

Ж.Б. Тельманова1, А.К. Аксаков2, А.О. Оралбек3, С.Т. Орозбаев4, К.Т. Кулай4, Н.З. Шапамбаев5,
Е.К. Куанычов6, З.А. Билялова7, Г.С. Игисинова8, К.Р. Рустемова9, Н.С. Игисинова10

1 Central Asian Institute for Medical Research, Нұр-Сұлтан, Республика Казахстан;
2 Астана медицина университеті, Нұр-Сұлтан, Республика Казахстан;
3 EurAsian Institute for Cancer Research, Бішкек, Кыргыз Республикасы;
4Қазақский национальный медицинский университет им. Асфендиярова, Алматы, Республика Казахстан;
5Қ.А. Ясауи атындағы Халықаралық қазақ-түрік университеті, Шымкент, Қазақстан Республикасы;
6Еurasian Institute for Medical Research, Нұр-Сұлтан, Республика Казахстан;
7Aстана медицина университеті, Нұр-Сұлтан, Республика Казахстан;
8Aстана медицина университеті, Нұр-Сұлтан, Республика Казахстан;
9Aстана медицина университеті, Нұр-Сұлтан, Республика Казахстан;
10Қазақский национальный медицинский университет им. Асфендиярова, Алматы, Республика Казахстан

СТУДИЯ

ВЛИЯНИЕ COVID-19 НА ЗАБОЛЕВАЕМОСТЬ РАКОМ ПРЯМОЙ КИШКИ В КАЗАХСТАНЕ: РЕЗУЛЬТАТЫ КОМПОНЕНТНОГО АНАЛИЗА

Ж.Б. Тельманова1, А.К. Аксаков1, А.О. Оралбек3, С.Т. Орозбаев3, К.Т. Кулай4,
Е.К. Куанычов3, З.А. Билялова7, Г.С. Игисинова7, К.Р. Рустемова8, Н.С. Игисинова10

1 Central Asian Institute for Medical Research, Нұр-Сұлтан, Республика Казахстан;
3 EurAsian Institute for Cancer Research, Бішкек, Кыргыз Республикасы;
4Қазақский национальный медицинский университет им. Асфендиярова, Алматы, Республика Казахстан;
7Астана медицина университеті, Нұр-Сұлтан, Республика Казахстан;
8Астана медицина университеті, Нұр-Сұлтан, Республика Казахстан;
10Қазақский национальный медицинский университет им. Асфендиярова, Алматы, Республика Казахстан

АННОТАЦИЯ

Актуальность: Ежегодно в мире регистрируется 732 210 новых случаев рака прямой кишки (РПК), заболеваемость составляет 7,6 на 100 000. Пандемия COVID-19 повлияла на скрининг, выявление случаев заболевания и направление пациентов с бессимптомным диагнозом рака.

Методы: В ретроспективном исследовании данных Министерства здравоохранения Республики Казахстан о новых случаях РПК, полученных из формы №7, использовались описательные и аналитические методы эпидемиологии. Для анализа динамики заболеваемости на основе количества случаев заболевания с 2010 по 2020 год был использован компонентный метод.

Результаты: Анализируя данные за 2010-2020 гг., мы обнаружили вновь снижение риска заболевания РПК. Рост заболеваемости, наблюдавшийся с 2010 по 2020 г. (+24,8%), был ниже, чем в доковидный период 2010-2019 гг. (+37,2%). Далее, мы обнаружили резкое снижение заболеваемости РПК с 2019 по 2020 гг. Общее снижение составило −0,89‰ и зависело от изменений в возрастной структуре населения, суточных отклонениях в популяции и других факторов. В целом, результаты исследования подчеркивают важность активного скрининга, своевременного выявления и лечения случаев заболевания РПК в условиях пандемии COVID-19.

Окончание в следующем номере
Заключение: Таким образом, анализ динамики заболеваемости раком прямой кишки в Казахстане свидетельствует о негативном влиянии пандемии на показатели и эффективность работы онкологической службы. С возобновлением работы после ограничений, связанных с COVID-19, все онкологические обследования были усилены. Тем не менее, количество посещений для скрининга рака остается значительно ниже, чем в предыдущие годы. Несвоевременная диагностика может привести к увеличению числа случаев поздних стадий KPP и общему падению числа случаев выживаемости этих пациентов. Однако эти прогнозы можно смягчить, если проводить надлежащее последующее наблюдение.

Ключевые слова: рак прямой кишки (РПК), заболеваемость, тренды, COVID-19, Казахстан.