Use of artificial intelligence program in radiation therapy

Relevance: Since 01 January 2020, the provision of radiation therapy (RT) at Almaty Oncology Center was optimized using the Visual Care Path (VCP) tool of the ARIA 15.6 oncology system, which supports the implementation of sequential and parallel mandatory procedures – from patient registration to completion of treatment.

The purpose was to study the impact of the implemented artificial intelligence system on RT effectiveness, safety, the share of complex RT techniques, and measure staff satisfaction and proficiency.

Results: The share of intensive modulated radiation therapy sessions changed from 39.3% in 2019 to 46.6% in 2020. After the implementation of VCP, timely pre-irradiation preparation of patients (centering, delineation, dose prescription) by department doctors increased from 76% to 91%, OR = 3.2; timely measurements of plans increased from 85% to 96%, OR = 4.7; the frequency of major events (the ratio of plans with errors or unsuccessful plans to the total number of plans, delineation of organs at risk and targets, dose prescription) decreased from 12% to 3%, OR = 4.5; the frequency of minor events (late notification of the patient of the treatment commencement, timely transition to the next stage of patient preparation for treatment decreased from 32% to 10%, OR = 4.5. Staff proficiency in VCP has increased by 75%. Following the anonymous survey results, 85% of staff reported a positive impact of VCP on the workflow.

Conclusion: The share of complex methods of RT has increased by 7.3%. The implementation of VCP significantly increased the workflow efficiency – by 3.9 times, reduced the number of major and minor events by 4.4 times. It allowed using a paperless communication with the executor’s identification at each stage of RT. The new technique was also quickly adopted and favorably accepted by the staff.

Keywords: radiation therapy (RT), artificial intelligence, quality control, cancer, linear accelerator.

Introduction: Radiation therapy (RT) is one of the three key methods of cancer treatment. Its role will still increase in the future due to its high efficiency and non-aggressiveness for the patient [1]. The launch of a linear accelerator at Almaty Oncology Center RT department in early April 2019 allowed reducing the queue and the average waiting time for RT for Almaty residents and treat up to 60 patients daily. Oncological informational systems are widely implemented in the treatment process [2]. This is of particular importance for accelerators used in sophisticated modern RT techniques like intensively modulated radiation therapy (IMRT, VMAT), image-guided radiation therapy (IGRT), stereotactic radiosurgery (SRS), and stereotaxic radiation therapy (SRT) [3]. In 2019, the oncological information system Visual CarePath (VCP) was installed at the RT Department of Almaty Cancer Center for RT constructing and monitoring [4]. From 01 January 2020, the department workflow was optimized using the Visual Care Path tool of ARIA 15.6 oncology system, supporting the implementation of sequential and parallel mandatory procedures – from patient registration to completion of treatment [5].

This study is especially relevant now when contactless communication between specialists, patient preparation, and conducting RT procedures are essential to ensure patient safety.
and after VCP implementation (January 2020 - September 2020) involving 575 patients.

The patients received treatment in compliance with patient safety’s ethical principles reported in the Helsinki Declaration and the GCP protocols. Quality Control plan included daily, weekly, monthly/quarterly, and yearly verification of the device performance, affecting the dose accuracy in RT. Verification by service codes – according to the rater in the Electronic Register of Cancer Patients and DAMU MED.

The timeliness of the task completion was measured to evaluate the efficacy. Doctors of the department ensured timely pre-irradiation preparation of patients (centering, delineation, dose prescription). Medical physicists ensured timely preparation of treatment plans. The patient safety was evaluated by the likelihood of unexpected events (major and minor). The frequency of major events (ratio of inaccuracy or unsuccessful plans, delineating organs at risk and targets, dose prescription) was measured. The frequency of minor errors (late notification of the patient of the treatment commencement, the transition to the next stage of patient preparation for treatment) was measured. Events identified during validation of the dose distribution plans were also considered. The degree of proficiency in the system and the staff satisfaction level were measured during a survey three months after the VCP implementation. Data before and after the VCP implementation was compared using the Pearson chi-square test (χ2) and the odds ratio (OR).

Results and Discussion:
All patients underwent high-tech RT (see Table 1 for details).

Table 1 – Number of patients and RT services with the use of the linear accelerators

<table>
<thead>
<tr>
<th>Service</th>
<th>Nine months of 2019</th>
<th>Nine months of 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conformal radio therapy</td>
<td>6510 335</td>
<td>6482 270</td>
</tr>
<tr>
<td>Intensive modulated radiation therapy (IMRT, VMAT)</td>
<td>4208 190 5644 270</td>
<td></td>
</tr>
<tr>
<td>Stereotactic radiation therapy/radiosurgery</td>
<td>14 6 45 12</td>
<td></td>
</tr>
<tr>
<td>Image-guided radiation therapy for selected tumors (IGRT)</td>
<td>9171 524 8740 553</td>
<td></td>
</tr>
<tr>
<td>Pre-irradiation topometric preparation-centering</td>
<td>644 556 611 580</td>
<td></td>
</tr>
<tr>
<td>Manufacturing a special fixation mask for radiotherapy</td>
<td>75 73 97 94</td>
<td></td>
</tr>
<tr>
<td>Selection of individual radiation therapy regimen</td>
<td>565 516 634 578</td>
<td></td>
</tr>
<tr>
<td>Individual dosimetry planning</td>
<td>565 508 650 579</td>
<td></td>
</tr>
</tbody>
</table>

The average number of services per patient in nine months of 2019 and 2020 was changing as follows: conformal radiation therapy – 19.4 and 21.3, IMRT, VMAT – 22.1 and 20.9 sessions, IGRT – 17.5 and 15.8 sessions on average, respectively. The share of more complex RT techniques grew with experience. Thus, the share of IMRT sessions changed from 39.3% in 2019 to 46.6% in 2020.

Timely pre-irradiation preparation of patients (centering, delineation, dose prescription) by department doctors after the implementation of VCP increased from 76% to 91% (χ²=14.8, p=0.01, OR=3.2 95% CI (1.8-6.3)).

Timely measurements of plans after the implementation of VCP increased from 85% to 96% (χ²=12.3, p=0.01, OR=4.7 CI (1.9-12.9)). The frequency of major events (the ratio of erroneous or unsuccessful plans, delineation of organs at risk and targets, dose prescription) after the implementation of VCP decreased from 12% to 3% (χ²=9.4, p=0.01, OR=4.5 CI (1.7-14.4)). The frequency of minor events (late notification of the patient of the treatment commencement, timely transition to the next stage of patient preparation for treatment) after the implementation of VCP decreased from 32% to 10% (χ²=26.8, p=0.01, OR=4.5 CI (2.5-8.3)). Staff proficiency in VCP has increased by 75%. Following the anonymous survey results, 85% of staff reported a positive impact of VCP on the workflow. Before the VCP implementation, treatment plans were discussed occasionally; now, it is mandatory to approve the treatment plan after discussion with a digital signature.

The clinical operation apparatus’s settings and preparation, including measuring all radiation characteristics, processing, and introduction into the dosimetry planning system and data verification, were completed before 01 April 2019. The starting point for implementation was 01 January 2020, when all radiation therapy participants have mastered and began to use the VCP model with a chart of sequential and parallel events from registration to completion of treatment.

A shortcoming of this research is the absence of comparison with other institutions in Kazakhstan. In the world literature, we have found only a study by N. Kovvalchuk et al. They reported an increase in simulation or treatment prescription for VCP by 35.2%, an increase in compliance with treatment planning with the use of VCP by 20.3%, and a decrease in the number of “near-misses” using VCP by 69.8% compared to baseline data. 94% of survey responders thought that VCP improved the patient care workflow by prompting staff to complete their tasks in time and improved the department organization level, and 81% of responders thought that the introduction of VCP improved the interdisciplinary communication in the department [4]. Our study provided comparable data.

Conclusion: The implementation of VCP has significantly increased the workflow efficiency (by 3.9 times), reduced the number of major and minor events (by 4.4 times), increased the share of complex RT techniques (by 7.3%), VCP technique was quickly adopted and favorably accepted by the staff. It allowed a transfer to pa-
perles communication and identification of the imple-
menter of each stage of RT. We recommend a wide use
of VCP in RT departments.

References:
1. Bosanquet N., Sikora K. The economics of cancer care. – Cam-
2. Ermakova S.E., Kovyzin I.E. Key aspects of robotization of
business processes in the field of healthcare // Issues Innov. Econ. –
3. Ishkinin E.I., Nurgaliev N.S., Ongarbayev B.T., Telguzhiyeva
Zh.A., Kim S.I. Availability of high-technology methods of prostate
cancer treatment for the population of Kazakhstan // Oncol. Radiol.
ciciency and safety in a radiation oncology department through the use of ARIA
R., Schlesinger D.J., Chen Q. The Improvement of a Novel Radiation
Therapy Workflow by Failure Mode and Effects Analysis // Int. J. Radi-

ТУЖЫРЫМ

Е.И. Исхинин1, К.Д. Дамбаев1,2, Р.Б. Райымбеков1,2, Р.З. Ибраев1, Р.У. Ахунова1, К.Б. Райымбакова1, А.А. Гончарова1, Ж.Г. Турлыбек1, Г.М. Калдарбекова1

1ҚДСБ «Алматы онкологиялық орталығы», Алматы, Қазақстан Республикасы;
2Қазақ онкология және радиология ғылыми-зерттеу институты, Алматы, Қазақстан Республикасы

Сәулелік терапияда жасанды интеллект программасын қолдану

Өзектілігі:
1. Bosanquet N., Sikora K. The economics of cancer care. – Cam-
2. Ermakova S.E., Kovyzin I.E. Key aspects of robotization of
business processes in the field of healthcare // Issues Innov. Econ. –
3. Ishkinin E.I., Nurgaliev N.S., Ongarbayev B.T., Telguzhiyeva
Zh.A., Kim S.I. Availability of high-technology methods of prostate
cancer treatment for the population of Kazakhstan // Oncol. Radiol.
ciciency and safety in a radiation oncology department through the use of ARIA
R., Schlesinger D.J., Chen Q. The Improvement of a Novel Radiation
Therapy Workflow by Failure Mode and Effects Analysis // Int. J. Radi-

АНАТОНИЯ

Е.И. Исхинин1, К.Д. Дамбаев1,2, Р.Б. Райымбеков1, Р.З. Ибраев1, Р.У. Ахунова1, К.Б. Райымбакова1, А.А. Гончарова1, Ж.Г. Турлыбек1, Г.М. Калдарбекова1

1УОЗ «Алматинский онкологический центр», Алматы, Республика Казахстан;
2АО «Казахский научно-исследовательский институт онкологии и радиологии», Алматы, Республика Казахстан

Использование программы искусственного интеллекта в лёгкой терапии

Актуальность: С 1 января 2020 года в Алматинском онко-
логическом центре была проведена оптимизация рабочего
процесса лучевой терапии (ЛТ) при помощи инструмента
Visual Care Path (VCP) онкологической системы ARIA 15.6 с объ-
зательным выполнением последовательных и параллельных
событий от регистрации пациента до завершения лечения.
Цель исследования: Изучить влияние внедрения системы
искусственного интеллекта на эффективность и безопас
ность процедур ЛТ, долю сложных методик ЛТ, а также измене
ние объема и качества отслеживания и документирования по
программам, проведенным в отделении.
Результаты: Доля сложных интегрированных программ в лечебных
терапевтических процедурах в 2019 году составила 46,6 %, в 2020 году – 49,3 %.
Увеличение доли сложных методик в лечении позволило уменьшить время выполнения
некоторых операций на 30%-40% от общего времени выполнения всей процедуры.
Заключение: Внедрение VCP достоверно повысило эффективность и безопас
ность процедуры ЛТ, что позволило уменьшить среднее время выполнения процедур в 4,4 раза, уменьшило количество
событий в 4,4 раза, повысило на 7,3% удельный вес сложных методик лечебной терапии. Данная методика была
быстро распространена и широко применяется на всех этапах лечебно-профилактической деятельности.
Ключевые слова: Лечебная терапия, искусственный интеллект, контроль качества, формализованный подход.